首页> 外文OA文献 >A Unifying Framework in Vector-valued Reproducing Kernel Hilbert Spaces for Manifold Regularization and Co-Regularized Multi-view Learning
【2h】

A Unifying Framework in Vector-valued Reproducing Kernel Hilbert Spaces for Manifold Regularization and Co-Regularized Multi-view Learning

机译:向量值再生核Hilbert空间的统一框架   流形正则化与协同多视图学习

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper presents a general vector-valued reproducing kernel Hilbert spaces(RKHS) framework for the problem of learning an unknown functional dependencybetween a structured input space and a structured output space. Our formulationencompasses both Vector-valued Manifold Regularization and Co-regularizedMulti-view Learning, providing in particular a unifying framework linking thesetwo important learning approaches. In the case of the least square lossfunction, we provide a closed form solution, which is obtained by solving asystem of linear equations. In the case of Support Vector Machine (SVM)classification, our formulation generalizes in particular both the binaryLaplacian SVM to the multi-class, multi-view settings and the multi-classSimplex Cone SVM to the semi-supervised, multi-view settings. The solution isobtained by solving a single quadratic optimization problem, as in standardSVM, via the Sequential Minimal Optimization (SMO) approach. Empirical resultsobtained on the task of object recognition, using several challenging datasets,demonstrate the competitiveness of our algorithms compared with otherstate-of-the-art methods.
机译:针对学习结构化输入空间和结构化输出空间之间未知的函数依赖关系的问题,本文提出了一种通用的向量值重现内核希尔伯特空间(RKHS)框架。我们的表述既包含向量值流形正则化又包含共正则化多视图学习,尤其提供了链接这两种重要学习方法的统一框架。在最小二乘损失函数的情况下,我们提供了一种封闭形式的解决方案,该解决方案是通过求解线性方程组获得的。在支持向量机(SVM)分类的情况下,我们的公式特别将binaryLaplacian SVM概括为多类,多视图设置,并将多类Simplex Cone SVM概括为半监督,多视图设置。该解决方案是通过解决单个二次优化问题(如在standardSVM中)通过顺序最小优化(SMO)方法获得的。使用几个具有挑战性的数据集,在对象识别任务上获得的经验结果证明了我们的算法与其他最新方法相比的竞争力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号